Graphing Rational Functions

These notes are intended as a summary of section 2.4 (p. 129 - 133) in your workbook. You should also read the section for more complete explanations and additional examples.

Graphing Rational Functions

To sketch the graph of a rational function:

1. Factor the numerator and denominator.
2. Find any non-permissible values of x.

- common factor:
- hole at NPV if factor's top degree \geq bottom degree
- vertical asymptote at NPV if factor's top degree $<$ bottom degree
- no common factor:
- vertical asymptote at NPV

3. Find any horizontal or oblique asymptotes.

- common factor:
- no horizontal or oblique asymptotes
- no common factor:
- horizontal asymptote at $y=0$ if function's top degree $<$ bottom degree
- horiizontal asymptote at $y=\frac{a}{b}$ if function's top degree $=$ bottom degree
- oblique asymptote if function's top degree $=$ bottom degree +1

4. Find x-intercepts, y-intercepts, and any other key points (at least one per section).
5. Draw the graph (asymptotic behavior).

Example 1 (sidebar p. 130)

Sketch the graph of this rational function, then state the domain and range.

$$
y=\frac{x^{2}-5 x+4}{1-x}
$$

Example 2 (sidebar p. 131)

Sketch the graph of this rational function, then state the domain.

$$
y=\frac{-2 x^{2}}{x^{2}-25}
$$

Example 3 (sidebar p. 132)

Sketch the graph of this rational function, then state the domain and range.

$$
y=\frac{-2 x^{2}+5 x-2}{x-1}
$$

Example 4 (sidebar p. 133)

Sketch the graph of this rational function, then state its domain and range.

$$
y=\frac{x+3}{x^{2}-9}
$$

Homework: \#3-5 in the section 2.4 exercises (p. 134 - 141). Answers on p. 142.

